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S-wave eigenvalues of the Lippmann-Schwinger kernel for the 
exponential potential 
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Abstract. It is shown that the S-wave eigenvalues of the Lippmann-Schwinger kernel for 
the exponential potential can be determined from the zeros of a Bessel function whose order 
is energy dependent. An asymptotic expansion is obtained for the leading eigenvalue at  
negative energies. 

1. Introduction 

A knowledge of the eigenvalues q(k2) of the Lippmann-Schwinger kernel is usually 
required when the two-body off-shell partial-wave T matrix is evaluated from an 
eigenfunction expansion (k2 is the energy in the centre of mass frame). Analytical and 
numerical results for the q(k2) of Coulomb, Hulthen, Yukawa, rectangular well, and 
Yamaguchi potentials have been presented by various authors (Weinberg 1963, Wright 
and Scadron 1964, Warburton 1966, Bierter and Dietrich 1967a, 1967b, Warburton and 
Stern 1969, Stern 1969, Fuda 1969); a numerical method which is suitable for application 
to any analytic local interaction has also been developed (Stern and Warburton 1972). 

2. The exponential potential 

In this section we shall obtain analytical results for the S-wave eigenvalues of the 
scattering kernel for the exponential potential 

V(r) = - A  exp( - pr). (1) 
In this case the qck’) are determined from the partial-wave Schrodinger equation 

which is subject to the boundary conditions 

and 
u(r) - I 

u(r) - exp(ikr) 

as r .+ 0 

as r -, cc (3) 

where we take Im k 2 0, corresponding to the k2 plane cut along the positive real axis. 
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The method we shall employ to solve equation (2) is similar to that used by Wu and 
Ohmura (1962, p 94) for the case q(kz)  = 1. The substitutions 

transform the differential equation to 

dZu du y 2 ~ + y - + ( y 2 - v z ) u  = 0 
dY dy 

which is Bessel's equation of order v. The solution is 

C 
u(y) = -__ (J - ,(a)J,(y) - JJ4J - .(Y)) J,M 

( 5 )  

since y = a at r = 0. C is a constant. From the well-known power series for J*,,(y) we 
find that as r -+ CO (ie y + 0) the wavefunction takes the asymptotic form 

However, from the second of the boundary conditions ( 3 )  we see that the term containing 
exp( -ikr) should be absent, which implies that 

J-,(ct) = 0 (8) 

where ct and v are defined in (4). Thus the eigenvalues q(k2)  are obtained from the zeros 
of J - ,(a), a Bessel function of energy-dependent order. The wavefunction (6) therefore 
reduces to 

u(r) = CJ-,(y). (9) 

With the aid of the well known relation 
112 

J1 ,2(~)  = (G) sin ct 

it is found that at k = ip/4 (v = -1 2 )  e quation (8) yields the result 

4A 
( N  = 1, 2, 3,. . .). 

N is the order of eigenvalue and we can thus speak of the Nth eigenvalue qN(k2) .  This 
formula shows that the S-wave eigenvalues of the exponential potential decrease as 
N - 2  as do those of Yukawa and HulthCn potentials (Warburton and Stern 1969). 

When A > 0 the potential (1) will form a physical bound state if q N ( k z )  = 1 for a 
value of k on the positive imaginary axis in the complex k plane (Weinberg 1963). There 
is one bound state for each eigenvalue which is not less than 1 at zero energy. Thus, by 
setting q equal to unity in equations (4) and (8), it is seen that S-wave binding energies 
can be found from the roots of the equation 

which has also been derived via another method by Massey and Mohr (1935). 
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We shall now determine the high-energy behaviour of the leading eigenvalue q1(k2). 
An asymptotic expansion for the first positive zero of J-Ja) for large positive -v-that 
is, for large values of k on the positive imaginary axis in the k plane-is 

where the coefficients cn have been given by Abramowitz and Stegun (1965). Thus we 
obtain the asymptotic expansion 

for high negative energies, from which we note the high-energy limit ql(k2) - l /k2 in 
contrast to the Coulomb high-energy limit qN(k2) - l/k which is observed by the 
eigenvalues of local interactions with a l/r singularity at the origin (Warburton and 
Stern 1969). At high energies the qN(k2) of this latter class of potentials are represented by 
expansions in powers of l/k, while equation (14) shows that the leading eigenvalue of the 
exponential potential (1) is represented by a series in powers of l/k2/3. 

3. Conclusion 

We have shown above that it is possible to obtain analytical representations of the 
S-wave eigenvalues of the Lippmann-Schwinger kernel for the exponential potential. 
However, for higher partial waves, we have only been able to compute the q(k2) of this 
interaction numerically (Stern and Warburton 1972). A knowledge of the eigenvalues 
q(k2) and corresponding wavefunctions u(r) enables the two-particle off-shell partial- 
wave amplitude to be evaluated from an eigenfunction expansion separable in the off- 
shell momenta (Weinberg 1963, Warburton and Stern 1969). This is well known to be 
the most suitable form of the two-body T matrix to use in the three-particle Faddeev 
equations (Lovelace 1964, Bierter and Dietrich 1967a, 1967b, Fuda 1969, Karchenko 
et a1 1970). 
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